Презентация - Базовые элементы алгебры логики


Базовые элементы алгебры логикиБазовые элементы алгебры логикиБазовые элементы алгебры логикиБазовые элементы алгебры логикиБазовые элементы алгебры логикиБазовые элементы алгебры логикиБазовые элементы алгебры логикиБазовые элементы алгебры логикиБазовые элементы алгебры логикиБазовые элементы алгебры логики






Слайды и текст этой презентации

Слайд 1

Базовые элементы алгебры логики

Слайд 2

Ключевые слова
алгебра логики высказывание логическая операция конъюнкция дизъюнкция инверсия

Слайд 3

Клод Шеннон (1916-2001). Его исследования позволили применить алгебру логики в вычислительной технике
Логика
Аристотель (384-322 до н.э.). Основоположник формальной логики (понятие, суждение, умозаключение).
Джордж Буль (1815-1864). Создал новую область науки - Математическую логику (Булеву алгебру или Алгебру высказываний).

Слайд 4

Алгебра - наука об общих операциях, аналогичных сложению и умножению, которые могут выполняться над разнообразными математическими объектами – числами, многочленами, векторами и др.
Алгебра

Слайд 5

Высказывание - это предложение на любом языке, содержание которого можно однозначно определить как истинное или ложное.
В русском языке высказывания выражаются повествовательными предложениями: Земля вращается вокруг Солнца. Москва - столица.
Побудительные и вопросительные предложения высказываниями не являются. Без стука не входить! Откройте учебники. Ты выучил стихотворение?
Высказывание
Но не всякое повествовательное предложение является высказыванием: Это высказывание ложное.

Слайд 6

Алгебра логики определяет правила записи, вычисления значений, упрощения и преобразования высказываний. В алгебре логики высказывания обозначают буквами и называют логическими переменными. Если высказывание истинно, то значение соответствующей ему логической переменной обозначают единицей (А = 1), а если ложно - нулём (В = 0). 0 и 1 называются логическими значениями.
Алгебра логики

Слайд 7

Конъюнкция - логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны. Другое название: логическое умножение. Обозначения:  , , &, И.
А В А&В
0 0 0
0 1 0
1 0 0
1 1 1
Логические операции
Таблица истинности:
Графическое представление
A
B
А&В

Слайд 8

Дизъюнкция - логическая операция, которая каждым двум высказываниям ставит в соответствие новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны. Другое название: логическое сложение. Обозначения: V, |, ИЛИ, +.
А В АVВ
0 0 0
0 1 1
1 0 1
1 1 1
Логические операции
Таблица истинности:
Графическое представление
A
B
АVВ

Слайд 9

Инверсия - логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному. Другое название: логическое отрицание. Обозначения: НЕ, ¬ , ¯ .
А Ā
0 1
1 0
Логические операции имеют следующий приоритет: инверсия, конъюнкция, дизъюнкция.
Логические операции
Таблица истинности:
Графическое представление
A
Ā

Слайд 10

Подведем итоги:
Инверсия
Конъюнкция
Дизъюнкция
Высказывание – это предложение на любом языке, содержание которого можно однозначно определить как истинное или ложное.
А Ā
0 1
1 0
A B A&B
0 0 0
0 1 0
1 0 0
1 1 1
A B AVB
0 0 0
0 1 1
1 0 1
1 1 1
Приоритет выполнения логических операций: ¬, &, V.
Основные логические операции