Презентация - Обратные тригонометрические функции (10 класс)


Обратные тригонометрические функции (10 класс)Обратные тригонометрические функции (10 класс)Обратные тригонометрические функции (10 класс)Обратные тригонометрические функции (10 класс)Обратные тригонометрические функции (10 класс)Обратные тригонометрические функции (10 класс)Обратные тригонометрические функции (10 класс)Обратные тригонометрические функции (10 класс)Обратные тригонометрические функции (10 класс)Обратные тригонометрические функции (10 класс)Обратные тригонометрические функции (10 класс)Обратные тригонометрические функции (10 класс)
На весь экран

Слайды и текст этой презентации

Слайд 1

Обратные тригонометрические функции
.

Слайд 2

Что же такое функция?
Зависимая переменная Соответствие y = f (x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины х сответсвует определенное значение другой величины у. Такое соответствие может быть задано различном образом , например : формулой, графически или таблицей. С помощью функции математически выражаются многообразные количественные закономерности в природе.

Слайд 3

Рассмотрим следующие обратные функции:
у = arcsin х у = arccos х у = arctg х у = arcctg х

Слайд 4

Обратная функция -
функция, обращающая зависимость, выражаемую данной функцией. Так, если y =f ( x) — данная функция, то переменная х, рассматриваемая как функция переменной у: х = j( y), является обратной по отношению к данной функции у = f ( x). Напр., х = есть обратная функция по отношению к y = x3.

Слайд 5

у = arcsin x
Функция y = sin x, рассматриваемая на промежутке [ -П/2 ; П/2] , имеет обратную функцию, которую называют арксинусом и записывают ч у = arcsin х , Свойства этой функции 1) Область определения – промежуток [ -1 ; 1] 2) Множество значений – промежуток [ -П/2 ; П/2] 3) Эта функция нечетная 4) Функция возрастает 5) Функция непрерывна

Слайд 6

у = arccos x
Функция у = cos x, рассматриваемая на промежутке [0;П], имеет обратную функцию, которую называют арккосинусом и записывают у = arccos х
Свойства этой функции 1) Область определения – промежуток [ -1 ; 1] 2) Множество значений – промежуток [ 0 ; П] 3) Эта функция не является ни четной ни нечетной 4) Функция убывает 5) Функция непрерывна

Слайд 7

у = arctg x
Функция y = tg x, рассматриваемая на промежутке (-П/2;П/2), имеет обратную функцию, которую называют арктангенсом записывают у = arctg х Свойства этой функции 1) Область определения – вся числовая прямая 2) Множество значений – промежуток (-П/2;П/2) 3) Эта функция является нечетной 4) Функция возрастает 5) Функция непрерывна

Слайд 8

у = arcctg x
Функция Y = ctg x, рассматриваемая на промежутке (0;П), имеет обратную функцию, которую называют арктангенсом и записывают у = arcctg х
Свойства этой функции 1) Область определения – вся числовая прямая 2) Множество значений – промежуток (0;П) 3) Эта функция не является ни четной ни нечетной 4) Функция убывает 5) Функция непрерывна

Слайд 9

arcsin x

Слайд 10

arccos x

Слайд 11

arctg x

Слайд 12

arcctg x