Презентация - Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»

Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве»







Слайды и текст этой презентации

Слайд 1

Назарова Мария Анатольевна учитель математики МО У СОШ № 25
Урок обобщающего повторения по теме «Параллельность прямых и плоскостей в пространстве.

Слайд 2

Цели урока
1. Общеобразовательные: организовать работу учащихся по систематизации знаний основных теоретических вопросов темы; закрепить и углубить знания и умения учащихся применять аксиомы стереометрии, следствия из аксиом, теоремы о параллельности прямых, прямой и плоскости, параллельности плоскостей. 2. Развивающие: создать условия для развития познавательной активности учащихся, познавательного интереса к предмету; развивать навыки самостоятельной деятельности учащихся; развивать навыки самоконтроля; развивать активности учащихся, формировать учебно-познавательных действий, коммуникативных, исследовательских навыков учащихся, умение анализировать и устанавливать связь между элементами темы. 3. Воспитательные: создать условия успешности ученика на уроке; воспитывать культуру умственного труда; способность к самоанализу, рефлексии; развивать умение рецензировать и корректировать ответы товарищей. воспитывать умение критически относиться к результатам деятельности; обеспечить гуманистический характер обучения;

Слайд 3

Аксиомы группы С.
Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.

А
К
D
B
С

Слайд 4

Аксиомы группы С.
Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.
С
с

Слайд 5

Аксиомы группы С.
Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.
a
b
С

Слайд 6

Через любую прямую и не принадлежащую ей точку можно провести плоскость, и притом только одну.

М
Следствия из аксиом
Т1

Слайд 7

Если две точки прямой принадлежат плоскости, то вся прямая принадлежит плоскости

А
В
Следствия из аксиом

Слайд 8

Через 3 точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну.

М
А
В
Следствия из аксиом

Слайд 9

Через две ПАРАЛЛЕЛЬНЫЕ прямые проходит плоскость, и притом только одна.
к
Следствие из Т1

Слайд 10

Способы задания плоскостей Рисунок

Вывод
Как в пространстве можно однозначно задать плоскость?
1. По трем точкам
2. По прямой и не принадлежащей ей точке.
3. По двум пересекающимся прямым.
4. По двум параллельным прямым.

Слайд 11

Сколько существует способов задания плоскости? Сколько плоскостей можно провести через выделенные элементы?
а)
б)
в)
г)
д)
е)
Ответьте на вопросы

Слайд 12

1. Любые три точки лежат в одной плоскости.
2. Любые четыре точки лежат в одной плоскости.
3. Любые четыре точки не лежат в одной плоскости.
4. Если прямая пересекает 2 стороны треугольника, то она лежит в плоскости треугольника.
5. 5 точек не лежат в одной плоскости. Могут ли какие–нибудь 4 из них лежать на одной прямой?
6. Через середины сторон квадрата проведена плоскость. Совпадает ли она с плоскостью квадрата?
Нет
Да
Нет
Да
Нет
Да
Определите: верно, ли утверждение?

Слайд 13

Дано: АВСD-параллелограмм А, В, С  α Доказать: D  α
А
В
С
D




Доказательство:
А, В  АВ, С,D  СD,
АВ  СD (по определению параллелограмма) 
АВ, СD  α 
D  α

Слайд 14

пересекаются
параллельны
а
а
а
b
b
b
скрещиваются
Лежат в одной плоскости
Не лежат в одной плоскости
Взаимное расположение прямых в пространстве.

Слайд 15

Задание 1 Вставьте пропущенные слова Единственную плоскость можно задать через три точки, при этом они на одной прямой. 2) Если точки прямой принадлежат плоскости, то и вся прямая принадлежит плоскости. 3) Две различные плоскости могут иметь только одну общую 4) Прямые являются в пространстве, если они не пересекаются и в одной плоскости. 5) Если прямая a лежит в плоскости α, прямая b не лежит в плоскости α, но пересекает ее в точке В
α, то прямые а и b
не лежат
две
прямую
параллельными
лежат
скрещивающиеся

Слайд 16

Задание 2 Определите: верно, ли утверждение?
1. Если прямая проходит через вершину треугольника, то она лежит в плоскости треугольника.
2. Если прямые не пересекаются, то они параллельны.
3. Прямая m параллельна прямой n, прямая m параллельна плоскости α. Прямая n параллельна плоскости α.
4. Все прямые пересекающие стороны треугольника лежат в одной плоскости.
5. Прямая АВ и точки С, D не лежат в одной плоскости. Могут ли прямые АВ и СD пересекаться?
Нет
Нет
Да
Да
Нет

Слайд 17

Задание 2 Определите: верно, ли утверждение?
6. Прямые АВ и СD пересекаются. Могут ли прямые АС и ВD быть скрещивающимися?
7. Прямые а и в не лежат в одной плоскости. Можно ли провести прямую с, параллельную прямым а и в?
8. Прямая а, параллельная прямой в, пересекает плоскость α. Прямая с параллельна прямой в. Может ли прямая с лежать в плоскости α?
9. Прямая а параллельна плоскости α. Существует ли на плоскости α прямые, непараллельные а?
Нет
Нет
Нет
Да

Слайд 18

Задание 3
Дано: ВС=АС, СС1 АА1, АА1=22 см Найти: СС1
Решение:
АА1СС1,
АС = ВС
 С1– середина А1В (по т.Фалеса) 
С С1- средняя линия ∆АА1В 
С С1= 0,5АА1 = 11 см
Ответ: 11см.

Слайд 19

Взаимное расположение прямой и плоскости в пространстве.

Слайд 20

Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости , то она параллельна и самой плоскости.
Дано:
Доказать:

Слайд 21

1.Через прямые a и b проведем плоскость α
Пусть , ,
α
2. α  β = b
Если a  β = Х, то Х  b, это невозможно, т.к. α  b
 a  β
 a  β
Теорема доказана.

Слайд 22

Дано: а  α а  β; β ∩ α = в Доказать: а  в
Доказательство: а, в  β Пусть в ∩ а, тогда а ∩ α, что противоречит условию. Значит в  а
Задание 2


α
β
а
в

Слайд 23

A
В
С
Плоскость проходит через сторону АС  АВС. Точки D и E - середины отрезков АВ и BC соответственно. Докажите, что DE  α
Доказательство:
1. Точки D и E - середины отрезков АВ и BC соответственно 
2. DE – средняя линия (по определению)  DE АС (по свойству)
 DE  α ( по признаку параллельности прямой и плоскости)

Слайд 24

Расположение плоскостей в пространстве.
α  β
α и β совпадают
α  β

Слайд 25

Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
Свойство параллельных плоскостей.
Дано: α  β, α   = a β   = b
Доказать: a  b
Доказательство:
1. a  , b  
2. Пусть a  b,
тогда a  b = М
3. M  α, M  β
 α  β = с (А2)
Получили противоречие с условием.
Значит a  b ч. т.д.

Слайд 26

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.
Свойство параллельных плоскостей.
Доказать: АВ = СD
Дано: α  β, АВ СD АВ  α = А, АВ  β = В, СD  α = С, СD  β = D
Доказательство:
1. Через АВ СD проведем 
2. α β, α   = a, β   = b
3.  АС В D,
4. АВ СD (как отрезки парал. прямых)
5.  АВСД – параллелограмм (по опр.)
 АВ = СD ( по свойству параллелограмма)

Слайд 27

1. если плоскости не пересекаются, то они параллельны. 2. плоскости параллельны, если прямая лежащая в одной плоскости, параллельна другой плоскости? 3. если две прямые, лежащие в одной плоскости, параллельны двум прямым другой плоскости, то эти плоскости параллельны? 4. если прямая перпендикулярна одной из двух параллельных плоскостей, то она перпендикулярна и другой плоскости. 5. прямые, по которым две параллельные плоскости пересечены третьей плоскостью, параллельны. 6. Если прямая пересекает одну из двух плоскостей, то она пересекает и другую. 7. Две плоскости, параллельные третьей, параллельны. 8. Отрезки прямых, заключенные между параллельными плоскостями, равны.
Определите: верно, ли утверждение?
ДА
НЕТ
ДА
НЕТ
ДА
НЕТ
НЕТ
ДА

Слайд 28

Через данную точку А провести плоскость, параллельную данной плоскости α, не проходящей через точку.
α
β
А
Решение.
1. В плоскости α возьмем т. В.
2. Проведем прямые ВС и ВD.
В

С1
D1
D
С
3. Построим вспомогательную плоскость через точку А и прямую ВD, в ней проведем прямую АD1 ВD.
4. Аналогично построим вспомогательную плоскость через точку А и прямую ВС, в ней проведем прямую АС1 ВС.

5. Через прямые АD1 и АС1 проведем плоскость β

Слайд 29

Задача 2. Доказать, что через каждую из двух скрещивающихся прямых можно провести плоскость так, чтобы эти плоскости были параллельны.
а
в
Пусть а скрещивается с в.
Доказательство:
На прямой в возьмем т. А,
А
через прямую а и т. А проведем плоскость,
в этой плоскости через т. А проведем прямую в1 , в1  в.
Через в1  в проведем плоскость α.
.
в1
Аналогично строим плоскость β.
По признаку параллельности плоскостей α  β.
.

Слайд 30