Слайды и текст этой онлайн презентации
Слайд 1
Лекция 16 Адсорбция на твердых адсорбентах
Слайд 2
План 16.1 Классификация твердых адсорбентов 16.2 Адсорбция на твердых адсорбентах 16.3 Адсорбционная терапия 16.4 Хроматография
Слайд 3
16.1 Твердые адсорбенты – это природные или синтетические вещества с развитой внутренней или наружной поверхностью, на которой происходит адсорбция из жидкой или газообразной фазы.
Слайд 4
Развитая внутренняя поверхность имеется у пористых веществ, наружная – у веществ в порошкообразном состоянии.
Слайд 5
Важнейшей характеристикой твердых адсорбентов является их активная (удельная) поверхность (S a ), выражаемая в м 2 /кг или м 2 /г. S a (активированный уголь) 1 10 3 м 2 /г S a (силикагель) 465 м 2 /г
Слайд 6
Классификация твердых адсорбентов 1. Углеродные сорбенты (активирован-ный уголь);
Слайд 7
2. Алюмосиликаты – алюминиевые соли поликремневых кислот; Например, каолин (белая глина) AI 2 О 3 Si O 2 2 H 2 O ;
Слайд 8
3. Цеолиты – алюмосилика-ты с высоким содержанием натрия и кальция;
Слайд 9
4. Силикагели – обезвоженный гель поликремневой кислоты (Si O 2 ) n ;
Слайд 10
5 . Оксиды и гидроксиды некоторых металлов: Al 2 O 3 , Al(OH) 3 , Fe 2 O 3 , Fe(OH) 3
Слайд 11
целлюлоза, пектин и лигнин, являющиеся важным компонентом питания человека. 6 . Пищевые волокна -
Слайд 12
Основные функции пищевого волокна Активируют перистальтику кишечника; 2) Адсорбируют и выводят из организма токсичные вещества;
Слайд 13
3) Способствуют росту бактерий, синтезирующих витамины группы В, которые, в свою очередь, предупреждают размножение болезнетворных микроорганизмов, а также образование токсинов и канцерогенов;
Слайд 14
4) Связывают тяжелые металлы и радионуклиды в прочные хелатные комплексы, которые легко выводятся из организма.
Слайд 15
Пищевое волокно в продуктах питания Продукт г волокна /100 г продукта Миндаль Яблоки Кукуруза Фасоль Тыква Капуста Рис неочищенный 5,1 3,9 3,9 2,2 2,2 1,4 1,3
Слайд 16
По мнению диетологов норма потребления пищевого волокна составляет 10-40 г/день . По сравнению с 1900 годом их потребление уменьшилось на 80%.
Слайд 17
16.2 Виды адсорбции на твердых адсорбентах Молекулярная адсорбция 2. Избирательная адсорбция электролитов из их растворов 3. Ионообменная адсорбция
Слайд 18
Молекулярной называют адсорбцию неэлектролитов и слабых электролитов из жидкой или газообразной фазы твердыми адсорбентами.
Слайд 19
Некоторые теории молекулярной адсорбции Название теории Физическая модель Изотерма адсорбции Уравнение изотермы Теория мономолекулярной адсорб - ции Ленгмю - ра ( 1915 ) Неровности являются активными центрами поверхности. Один центр адсорбирует одну молекулу адсорбата. Г Г max С (p) Г K c 1 K c Г Г max 1 K p K p Г max
Слайд 20
Некоторые теории молекулярной адсорбции Название теории Физическая модель Изотерма адсорбции Уравнение изотермы Теория полимолекулярной адсорб - ции Поляни ( 1915 ) Поверхность однородна; ее силовое поле притягивает несколько слоев адсорбата С (p) Г
Слайд 21
Некоторые теории молекулярной адсорбции Название теории Физическая модель Изотерма адсорбции Уравнение изотермы Теория адсорб- ции БЭТ ( 1935-1940 ) С (p) Г
Слайд 22
Для вычисления молекулярной адсорбции используют эмпирическое уравнение Фрейндлиха: æ k с 1/n æ kp 1/ n
Слайд 23
æ – масса адсорбата на 1 грамме адсорбента, р – равновесное давление в газовой фазе, с – равновесная концентрация в жидкой фазе, k – константа Фрейндлиха, n – параметр уравнения.
Слайд 24
Определение параметров уравнения Фрейндлиха Lg æ Lg c Lg k β tg β 1/n
Слайд 25
Адсорбция электролитов из растворов Избирательная Ионоселективная
Слайд 26
Избирательная адсорбция электролитов из растворов описывается правилами Панета-Фаянса.
Слайд 27
Правило 1 : на твердой поверхности адсорбируются преимущественно те ионы, которые входят в ее состав. Такую адсорбцию можно рассматривать как достраивание кристаллической решетки адсорбента.
Слайд 28
а) Ag NО 3 Na Cl Ag Cl (т) Na NO 3 изб. Ag Ag Ag Ag Потенциал-определяю-щий ион (ПОИ) Поверхность адсорбента заряжается положительно
Слайд 29
а) Ag NО 3 Na Cl Ag Cl (т) Na NO 3 изб. Cl - Cl - Cl - Cl - Потенциал-определяю-щий ион (ПОИ) Поверхность адсорбента заряжается отрицательно
Слайд 30
Правило 2: на заряженной поверхности адсорбируются ионы противоположного знака.
Слайд 31
Ag Ag Ag На твердой поверхности формируется двойной электрический слой NO 3 - NO 3 - NO 3 - NO 3 - Противо-ион (ПРИ) А)
Слайд 32
Cl - Cl - Cl - На твердой поверхности формируется двойной электрический слой Na Na N а Na Противо-ион (ПРИ) б)
Слайд 33
Способность ионов адсорбироваться на твердых поверхностях зависит: от заряд иона ; чем больше заряд, тем выше адсорбционная способность; от ионного радиуса ; чем меньше радиус, тем ниже адсорбционная способность.
Слайд 34
Ионы одного знака и заряда образуют лиотропные ряды : Li Na K Rb Cs Увеличение адсорбционной способности Cl Br NO 3 I CNS OH Увеличение адсорбционной способности
Слайд 35
Ионообменная адсорбция - это процесс, в котором твердый адсорбент и раствор обмениваются одноименно заряженными ионами в эквивалентных количествах.
Слайд 36
Сорбенты, способные и обмену ионов, называются ионообменниками или ионитами. Иониты Катиониты Аниониты
Слайд 37
Катиониты содержат подвижные катионы водорода H или катионы металлов. К ним относятся алюмосиликаты, цеолиты, силикагели, целлюлоза и другие сорбенты: R – H Na R – Na H R – органическая полимерная основа
Слайд 38
Аниониты содержат подвижные гидроксид-ионы OH - . К ним относятся основания Fe(OH) 3, Al(OH) 3 и другие сорбенты: R – OH - Cl - R – Cl - OH -
Слайд 39
Иониты используются: для обессоливания морской воды, для очистки сточных вод, для очистки фармакологических препаратов
Слайд 40
В медицине они применяются: для консервации крови, для беззондового определения кислотности желудочного сока, для детоксикации при отравлениях электролитами
Слайд 41
аниониты используются как антацидные препараты, катиониты применяются для лечения отеков, связанных с декомпенсацией сердечной деятельности .
Слайд 42
К ионному обмену способны ткани растений и животных. Карбоксильные и фосфатные группы обуславливают анионообменные свойства, аминогруппы – катионообменные свойства.
Слайд 43
16.3 Адсорбционная терапия применяется для удаления токсинов и других вредных веществ из организма человека .
Слайд 44
В современной медицине твердые сорбенты применяются для проведения: гемо-, лимфо- и плазмо-сорбции, энтеросорбции
Слайд 45
Гемо-, лимфо- и плазмосорбция – это методы очистки крови и других биологических жидкостей путем их пропускания через колонки с активированным углем и другими сорбентами (применяется с 60-х годов 20 в.)
Слайд 47
Энтеросорбция – это метод лечения, основанный на связывании и выведении из ЖКТ токсичных веществ и аллергенов.
Слайд 48
Энтеросорбенты – лекарственные препараты различной природы осуществляющие связывание токсинов в ЖКТ путем адсорбции, ионного обмена и комплексообразования.
Слайд 49
«Будущее не за вводящей, а за выводящей медициной» проф. Ю. М. Лопухин
Слайд 50
15.4 Хроматографический метод анализа (от греческого "хроматос" - цвет ) разработан русским ботаником М. С. Цветом в 1903 г.
Слайд 51
Цвет установил, что зеленый пигмент растений хлорофилл состоит из нескольких веществ. При пропускании экстракта зеленого листа через колонку, заполненную порошком мела, и промывании ее эфиром он получил несколько окрашенных зон, что говорило о наличии в экстракте нескольких веществ.
Слайд 52
Развитие хроматографических методов началось в 30-ые годы, когда возникла потребность в новом методе разделения и очистки веществ, разлагающихся при нагревании.
Слайд 53
Хроматография – это физико-химический метод разделения веществ, основанный на их распределении между двумя не смешивающимися фазами, одна из которых является неподвижной, а другая - подвижной.
Слайд 54
Неподвижная фаза представляет собой поверхностно-активное твердое тело или жидкость, закрепленную на поверхности инертного твердого носителя.
Слайд 55
Подвижная фаза - газ или жидкость, которые проходят через слой неподвижной фазы.
Слайд 56
Вещество подвижной фазы непрерывно вступает в контакт с новыми участками сорбента и частично адсорбируется, а адсорбированное вещество контактирует со свежими порциями подвижной фазы и частично десорбируется.
Слайд 57
Хроматография - процесс, основанный на многократном повторении актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента.
Слайд 58
Классификация методов хроматографии По агрегатному состоянию фаз. По доминирующему механизму взаимодействия фаз.
Слайд 59
Классификация по агрегатному состоянию фаз Непод-вижная фаза Подвижная фаза газообразная жидкая Твердая Жидкая Газо-адсорбционная хроматография (ГАХ) Распределитель-ная газо-жидкост-ная хроматография (ГЖХ) Жидкостно-адсорбционная хроматография (ЖАХ) Распределитель-ная жидкостно-жидкостная хроматография (ЖЖХ)
Слайд 60
Классификация по доминирующему механизму а) Адсорбционная хроматография - процесс разделения основан на различной способности веществ анализируемой смеси адсорбироваться на твердом адсорбенте. Подвижной фазой служит жидкость или газ.
Слайд 61
б) Распределительная хроматография – процесс разделения компонентов смеси основан на различной растворимости веществ в двух несмешивающихся жидкостях.
Слайд 62
в) Ионообменная хроматография основана на обратимом обмене ионов между раствором и ионообменником.
Слайд 63
Гель - хроматография – неподвижной фазой является малоактивный материал (гель), способный удерживать молекулы вещества определенных размеров и форм, и разделять их по способности проникать в поры геля.
Слайд 64
Аффинная (биоспецифическая) хроматография основана на свойстве ВМС и других биологически активных соединений "узнавать" в любой смеси "свои" строго определенные вещества и взаимодействовать с ними. Так фермент "узнает" свой субстрат, антиген "узнает" антитело, гормон - "свой" рецептор.
Слайд 65
Хроматографию широко применяют в медико-биологических исследованиях: Анализ крови на присутствие алкоголя, наркотиков, допинг-контроль.
Слайд 66
Исследование состава липидов крови, что привело к пониманию проблемы атеросклероза Изучение возбудителей инфекционных заболеваний или гнойно-воспалительных процессов.
Слайд 67
В настоящее время в ведущих лабораториях изучают метаболические профили биосред: крови, мочи, слюны, выдыхаемого воздуха. В одном анализе определяют несколько сотен компонентов. Профили несут в себе информацию о том, какие лекарства получал человек, какие заболевания перенес и т.д.
Слайд 68
Благодарим за внимание!!!