Презентация - Действие магнитного поля на движущуюся заряженную частицу

Нажмите для просмотра
Действие магнитного поля на движущуюся заряженную частицу
РаспечататьУникальность: 86%

Слайдов: 17
Просмотров: 1889
Скачиваний: 1322
На весь экран

Слайды и текст этой презентации

Слайд 1

Действие магнитного поля на движущуюся заряженную частицу. Сила Лоренца. Подготовила: Учитель физики Клименко Ольга Анатольевна

Слайд 2

План 1) Лоренц Хендрик Антон; 2) Сила Лоренца; 3) Направление силы Лоренца; 4) Формула силы Лоренца при наличии магнитного и электрического полей; 5) Правило левой руки; 6) Движение заряженой частица под действием силы Лоренца, если если α 90 ( если α 90 ); 7) Применение силы Лоренца : а) Кинескоп - телевизионная трубка; б) Масс-спектрограф; в) Циклотрон - ускоритель заряженных частиц; г) Магнетрон. 8) Примеры задач. 9) Спасибо за внимание

Слайд 3

Лоренц Хендрик Антон (1853–1928) – нидерландский физик-теоретик, создатель классической электронной теории, член Нидерландской АН. Вывел формулу, связывающую диэлектрическую проницаемость с плотностью диэлектрика, дал выражение для силы, действующей на движущийся заряд в электромагнитном поле (сила Лоренца), объяснил зависимость электропроводности вещества от теплопроводности, развил теорию дисперсии света.

Слайд 4

Сила Лоренца Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды. Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца Сила Лоренца определяется соотношением: Fл q V B sina где q - величина движущегося заряда; V - модуль его скорости; B - модуль вектора индукции магнитного поля; a - угол между вектором скорости заряда и вектором магнитной индукции.

Слайд 5

Направление силы Лоренца Сила Лоренца (как и всякая сила) – это вектор. Ее направление перпендикулярно вектору скорости и вектору (то есть перпендикулярно плоскости, в которой находятся векторы скорости и магнитной индукции) и определяется правилом правого буравчика (правого винта) рис.1 (a). Если мы имеем дело с отрицательным зарядом, то направление силы Лоренца противоположно результату векторного произведения ( рис.1(b)) вектор направлен перпендикулярно плоскости рисунков на нас.

Слайд 6

Формула силы Лоренца при наличии магнитного и электрического полей Если заряженная частица перемещается в пространстве, в котором находятся одновременно два поля (магнитное и электрическое), то сила, которая действует на нее, равна: где – вектор напряженности электрического поля в точке, в которой находится заряд. Выражение (4) было эмпирически получено Лоренцем. Сила ,которая входит в формулу (4) так же называется силой Лоренца (лоренцевой силой). Деление лоренцевой силы на составляющие: электрическую и магнитную относительно, так как связано с выбором инерциальной системы отсчета. Так,если система отсчета будет двигаться с такой же скоростью , как и заряд, то в такой системе сила Лоренца, действующая на частицу, будет равна нулю. Единицы измерения силы Лоренца Основной единицей измерения силы Лоренца (как и любой другой силы) в системе СИ является: F H В СГС: F дин

Слайд 7

Правило левой руки Ладонь левой руки следует расположить таким образом, чтобы в неё перпендикулярно входили линии индукции созданного магнитного поля. Положение четырёх вытянутых пальцев зависит от направления скорости движения положительного заряда (против направления скорости движения отрицательного). Оттопыренный большой палец левой руки в этом случае укажет направление силы Лоренца.

Слайд 8

Слайд 9

Применение силы Лоренца. Кинескоп - телевизионная трубка, электронно-лучевая трубка. На движущуюся заряженную частицу со стороны магнитного поля действует сила Лоренца. Эта сила перпендикулярна скорости и не совершает работу. Действие магнитного поля на движущийся заряд широко используют в современной технике. Достаточно упомянуть телевизионные трубки (кинескопы), в которых летящие к экрану электроны отклоняются с помощью магнитного поля, создаваемого особыми катушками . Применение силы Лоренца мы можем наблюдать каждый день дома, сидя у экрана телевизора.

Слайд 10

Применение силы Лоренца Масс-спектрограф. Другое применение действие магнитного поля нашло в приборах, позволяющих разделять заряженные частицы по их удельным заряд . Такие приборы получили название масс-спектрографов. Вакуумная камера прибора помещена в магнитное поле. Ускоренные электрическим полем заряженные частицы(электроны или ионы), описав дугу, попадают на фотопластинку, где оставляют след, позволяющий с большой точностью измерить радиус траектории r. По этому радиусу определяется удельный заряд иона. Зная же заряд иона, легко вычислить его массу . Изучить химический состав грунта, взятого на Луне, например, поможет тот же масс-спектрограф.

Слайд 11

Применение силы Лоренца. Циклотрон - ускоритель заряженных частиц. Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте. Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 Мэ В.

Слайд 12

Применение силы Лоренца. Магнетрон. Магнетрон — это мощная электронная лампа, генерирующая микроволны при взаимодействии потока электронов с магнитным полем. Начиная с 1960-х годов, магнетроны получили применение в СВЧ-печах для домашнего использования. Магнетроны бывают как не перестраиваемые, так и перестраиваемые в небольшом диапазоне частот. Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы. Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Слайд 13

Решение задач: Задача 1 : Определить силу, с которой однородное магнитное поле действует на проводник длиной 20 см, если сила тока в нем 300 м А, расположенный под углом 45 градусов к вектору магнитной индукции. Магнитная индукция составляет 0,5 Тл. Задача 2 : Определить силу тока в проводнике длиной 20 см, расположенному перпендикулярно силовым линиям магнитного поля с индукцией 0,06 Тл, если на него со стороны магнитного поля действует сила 0,48 Н.

Слайд 14

Задача 3 :Определить центростремительную силу, действующую на протон в однородном магнитном поле с индукцией 0,01 Тл (вектор магнитной индукции перпендикулярен вектору скорости), если радиус окружности, по которой он движется, равен 5 см. Задача 4 : Какова скорость заряженного тела, перемещающегося в магнитном поле с индукцией 2 Тл, если на него со стороны магнитного поля действует сила 32 Н. Скорость и магнитное поле взаимно перпендикулярны. Заряд тела равен 0,5 м Кл.

Слайд 15

Задача 5 : С каким ускорением движется электрон в однородном магнитном поле (вектор магнитной индукции перпендикулярен вектору скорости) с индукцией 0,05 Тл, если сила Лоренца, действующая на него, равна 5x10-13 Н. (Так как сила Лоренца является одновременно и центростремительной силой, и электрон движется по окружности, в задаче требуется рассчитать центростремительное ускорение, которое приобретает электрон в результате действия центростремительной силы.)

Слайд 16

Вопросы после презентации : 1) Кто такой Лоренц Хендрик Антон ? 2) Что такое сила Лоренца ? 3) Каким соотношение определяется сила Лоренца ? 4) Как звучит правило левой руки ? 5) Где используется сила Лоренца?

Слайд 17

Спасибо за внимание