Слайды и текст этой онлайн презентации
Слайд 1
ГОАПОУ Липецкий металлургический колледж
Современные наземные оптические телескопы
Выполнила:
студентка группы ИСиП 20-1
Дворникова Ксения
Слайд 2
Оптический телескоп
телескоп, собирающий и фокусирующий электромагнитное излучение оптического диапазона.
Его основные задачи: увеличить блеск и видимый угловой размер объекта, то есть количество света, приходящего от небесного тела и дать возможность изучить мелкие детали наблюдаемого объекта.
Слайд 3
Конструкция оптического телескопа
Оптический телескоп представляет собой трубу, имеющую объектив и окуляр и установленную на монтировке, снабжённой механизмами для наведения на объект наблюдения и слежения за ним.
Слайд 4
История возникновения первого телескопа
В августе 1609 года Галилео Галилей изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба 20-кртным увеличением - комбинация очковых линз, сегодня бы ее назвали рефрактор. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.
Слайд 5
Виды современных телескопов
Линзовый телескоп
Зеркальный телескоп
Зеркально-линзовый
телескоп
Рефракторы
Рефлекторы
Катадиоптрические
Слайд 6
Рефракторы (линзовые телескопы)
Исторически первыми появились линзовые телескопы.
Свет в таком телескопе собирается с помощью двояковыпуклой линзы, которая и является объективом телескопа. Ее действие основано на свойстве выпуклых линз преломлять световые лучи и собирать в определенной точке – фокусе. Поэтому часто линзовые телескопы называют рефракторами (от лат. refract – преломлять).
Слайд 7
Рефракторы (линзовые телескопы)
В рефракторе Галилея (созданном в 1609 г.) для того, чтобы собрать максимум звездного света и позволить человеческому глазу его увидеть, использовались две линзы. Первая линза (объектив) – выпуклая, она собирает свет и фокусирует его на определенном расстоянии, а вторая линза (играющая роль окуляра) – вогнутая, превращает сходящийся пучок световых лучей обратно в параллельный. Система Галилея дает прямое, неперевернутое изображение, однако сильно страдает от хроматической аберрации*, портящей изображение. Хроматическая аберрация проявляется в виде ложной окраски границ и деталей объекта.
(*Аберрация – искажение в изображении.)
Слайд 8
Современные модели
телескопов- рефракторов
Слайд 9
Рефрактор Йеркской обсерватории
в США
В Йеркской обсерватории установлен 40-дюймовый телескоп-рефрактор. Это самый большой рефрактор в мире, имеющий диаметр объектива в 102 см. Линза с большим диаметром была бы слишком тяжела и сложна в изготовлении.
Крупные телескопы обычно являются рефлекторами.
Слайд 10
Рефлекторы
(зеркальные телескопы)
телескоп, объектив которого состоит только из зеркал.
также как и выпуклая линза, вогнутое зеркало способно собирать свет в некоторой точке. Если поместить в этой точке окуляр, то можно будет увидеть изображение.
Слайд 11
Рефлекторы
(зеркальные телескопы)
Одним из первых рефлекторов был рефлекторный телескоп Грегори (1663), который придумал телескоп с параболическим главным зеркалом. Изображение, которое можно наблюдать в подобный телескоп, оказывается свободным и от сферических, и от хроматических аберраций. Собранный большим главным зеркалом свет, отражается от небольшого эллиптического зеркала, закрепленного перед главным, и выводится к наблюдателю через отверстие в центре главного зеркала.
Слайд 12
Рефлекторы
(зеркальные телескопы)
Разочаровавшись в современных ему рефракторах, Исаак Ньютон в 1667 г. начал разработку телескопа-рефлектора. Ньютон использовал металлическое главное зеркало (стеклянные зеркала с серебряным или алюминиевым покрытием появились позже) для собирания света, и небольшое плоское зеркальце для отклонения собранного светового пучка под прямым углом и вывода его сбоку трубы в окуляр. Таким образом, удалось справиться с хроматической аберрацией – вместо линз в этом телескопе используются зеркала, которые одинаково отражают свет с разными длинами волн.
Слайд 13
Рефлекторы
(зеркальные телескопы)
В 1672 году француз Лоран Кассегрен предложил двухзеркальную схему, где первое зеркало было параболическим, а в качестве второго рефлектора выступал выпуклый гиперболоид, располагающийся перед фокусом первого. После отражения на главном зеркале пучок лучей попадает на вспомогательное зеркало, которое направляет его обратно – через отверстие в главном зеркале.
Слайд 14
Самые большие телескопы- рефлекторы
Обсерватория Кека
Большой телескоп азимутальный (БТА)
Телескоп "Субару"
Большой южноафриканский телескоп
Слайд 15
Катадиоптрические
(зеркально-линзовые) телескопы
Зеркально - линзовые
(или катадиоптрические) телескопы используют как линзы, так и зеркала для построения изображения и исправления аберраций. Среди катадиоптриков у любителей астрономии наиболее популярны два типа телескопов, основанных на кассегреновской схеме – Шмидт-Кассегрен и Максутов-Кассегрен.
Слайд 16
Телескопы Шмидта - Кассергрена
В телескопах Шмидта-Кассегрена
главное и вторичное зеркала – сферические. Сферическая аберрация исправляется стоящей на входе в трубу полноапертурной коррекционной пластиной Шмидта. Эта пластина со стороны кажется плоской, но имеет сложную поверхность, изготовление которой и составляет главную трудность изготовления системы.
Слайд 17
Система Максутова-Кассегрена
Система Максутова-Кассегрена была разработана советским оптиком Д. Максутовым и также имеет сферические зеркала, а исправлением аберраций занимается полноапертурный линзовый корректор – мениск (выпукло-вогнутая линза).
Слайд 18
Катадиоптрические
(зеркально-линзовые) телескопы
Оба типа позволяют добиться высокого уровня коррекции искажений. Телескопы, собранные по схеме Шмидта-Кассегрена легче, однако катадиоптрики Максутова-Кассегрена дают более качественное изображение.
Слайд 19
Заключение
В настоящее время существует большое разнообразие телескопов, которые можно классифицировать по назначению и виду.
Современная аппаратура способна обнаруживать даже невидимые глазу космические излучения и в скором времени мы сможем увидеть то, что не видели ранее.
Слайд 20
Спасибо за внимание!