Слайд 2
Принцип решения
Обычно используется следующая схема решения:
изучается условие задачи;
вводится система обозначений для логических высказываний;
конструируется логическая формула, описывающая логические связи
между всеми высказываниями условия задачи;
определяются значения истинности этой логической формулы;
из полученных значений истинности формулы определяются значения
истинности введённых логических высказываний,
на основании которых делается заключение о решении.
Слайд 3
Пример (задача В4 ЕГЭ)
Задача: Трое друзей, болельщиков автогонок "Формула-1", спорили о результатах предстоящего этапа гонок.
— Вот увидишь, Шумахер не придет первым, — сказал Джон. Первым будет Хилл.
— Да нет же, победителем будет, как всегда, Шумахер, — воскликнул Ник. — А об Алези и говорить нечего, ему не быть первым.
Питер, к которому обратился Ник, возмутился:
— Хиллу не видать первого места, а вот Алези пилотирует самую мощную машину.
По завершении этапа гонок оказалось, что каждое из двух предположений двоих друзей подтвердилось, а оба предположения третьего из друзей оказались неверны. Кто выиграл этап гонки?
Решение. Введем обозначения для логических высказываний:
Ш — победит Шумахер; Х — победит Хилл; А — победит Алези.
Реплика Ника "Алези пилотирует самую мощную машину" не содержит никакого утверждения о месте, которое займёт этот гонщик, поэтому в дальнейших рассуждениях не учитывается.
Зафиксируем высказывания каждого из друзей:
Учитывая то, что предположения двух друзей подтвердились, а предположения третьего неверны, запишем и упростим истинное высказывание
Ответ: победителем стал Шумахер.