Презентация - Урок-КВН «Цилиндр - Конус»

Нажмите для просмотра
Урок-КВН «Цилиндр - Конус»
Распечатать
  • Уникальность: 85%
  • Слайдов: 29
  • Просмотров: 4445
  • Скачиваний: 2607
  • Размер: 0.88 MB
  • Онлайн: Да
  • Формат: ppt / pptx
В закладки
Оцени!
  Помогли? Поделись!

Слайды и текст этой онлайн презентации

Слайд 1

Урок-КВН «Цилиндр - Конус», слайд 1
Воробьева Оксана Владимировна Преподаватель математики ГБОУ СПО «ЗАМТ» г. Заволжье

Слайд 2

Урок-КВН «Цилиндр - Конус», слайд 2
Тема: «Цилиндр. Конус».
Урок-КВН

Слайд 3

Урок-КВН «Цилиндр - Конус», слайд 3
1. Закрепить полученные знания по теме : «Цилиндр. Конус.» 2. Формировать положительное отношение к знаниям, прививать интерес учащихся к предмету. Показать связь между математикой и профессией. Воспитывать познавательную активность, культуру общения, культуру диалога. Развивать математическую грамотность речи, логического мышления.
Цели и задачи:

Слайд 4

Урок-КВН «Цилиндр - Конус», слайд 4
Домашнее задание Разминка Решение задач Конкурс капитанов
Конкурсы

Слайд 5

Урок-КВН «Цилиндр - Конус», слайд 5
Домашнее задание
Конкурс

Слайд 6

Урок-КВН «Цилиндр - Конус», слайд 6
Историческая справка : Конус в переводе с греческого "konos" означает "сосновая шишка".С конусом люди знакомы с глубокой древности.
Платон (428–348 гг. до н. э.) Много сделала для геометрии школа Платона, в частности, ей принадлежит: а) изучение конических сечений б) исследование свойств призмы, пирамиды, цилиндра и конуса

Слайд 7

Урок-КВН «Цилиндр - Конус», слайд 7
Демокрит (470 - 380 гг. до н. э.) - древнегреческий философ-материалист получил формулы для вычисления объема пирамиды и конуса.
Историческая справка

Слайд 8

Урок-КВН «Цилиндр - Конус», слайд 8
Аполлоний Пергский (260–170 гг. до н.э.) Большой трактат о конических сечениях был написан Аполлонием Пергским – учеником Евклида (III в. до н.э.), который создал великий труд из 15 книг под названием “Начала”. Эти книги издаются и по сей день, а в школах Англии по ним учатся до сих пор.
Историческая справка

Слайд 9

Урок-КВН «Цилиндр - Конус», слайд 9
Детали машин , имеющие форму конуса:
Конические подшипники качения (коробка передач, оси колес) Камеры карбюратора Конические резьбы (система охлаждения)

Слайд 10

Урок-КВН «Цилиндр - Конус», слайд 10
Историческая справка : Слово цилиндр происходит от греческого слова , что означает “валик”, “каток”. С цилиндром люди знакомы с глубокой древности.
Архимед (287–212 гг. до н.э.) В 1906 году была обнаружена книга Архимеда “О методе”, в которой дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед приписывает честь открытия этого принципа – Демокриту (470–380 гг. до н.э.) – древнегреческому философу-материалисту.

Слайд 11

Урок-КВН «Цилиндр - Конус», слайд 11
Платон (428–348 гг. до н.э.).
Много сделала для геометрии школа Платона. Платон был учеником Сократа (470–399 гг. до н.э.). В 387 г. до н.э. Платон основал в Африке Академию, в которой работал 20 лет. Каждый, входящий в Академию, читал надпись: “Пусть сюда не входит никто, не знающий геометрии”. Школе Платона принадлежит исследование свойств цилиндра.
Историческая справка

Слайд 12

Урок-КВН «Цилиндр - Конус», слайд 12
Поршень Цилиндр Шейка коленчатого вала Шейка распредвала Амортизатор
Детали машин имеющие форму цилиндра

Слайд 13

Урок-КВН «Цилиндр - Конус», слайд 13
Разминка
Конкурс

Слайд 14

Урок-КВН «Цилиндр - Конус», слайд 14

Покажите сечение цилиндра (конуса) плоскостью, проходящей через ось. Какая фигура получается в сечении?

Слайд 15

Урок-КВН «Цилиндр - Конус», слайд 15
Покажите сечение цилиндра (конуса) плоскостью, проходящей перпендикулярно к оси. Какая фигура получается в сечении?

Слайд 16

Урок-КВН «Цилиндр - Конус», слайд 16
Вращением какой фигуры можно получить конус (цилиндр) ?

Слайд 17

Урок-КВН «Цилиндр - Конус», слайд 17
Покажите угол между образующей конуса и его осью. Равны ли эти углы?
Покажите угол между образующей конуса и плоскостью его основания. Равны ли эти углы ?

Слайд 18

Урок-КВН «Цилиндр - Конус», слайд 18
Объясните, как построить линейный угол двугранного угла, образованного секущей плоскостью (МАВ) и плоскостью основания конуса.
Постройте отрезок, длина которого равна расстоянию м/у осью цилиндра и плоскостью γ, параллельной его оси.

Слайд 19

Урок-КВН «Цилиндр - Конус», слайд 19
Как изменится площадь боковой поверхности конуса (цилиндра), если его образующую и радиус основания увеличить в 3 раза (уменьшить в 2 раза) ?

Слайд 20

Урок-КВН «Цилиндр - Конус», слайд 20
Конкурс
Решение задач

Слайд 21

Урок-КВН «Цилиндр - Конус», слайд 21
Точки А и В расположены на видимой части боковой поверхности цилиндра (конуса). Проведите отрезок АВ. Все ли точки отрезка АВ принадлежат боковой поверхности цилиндра (конуса)?

Слайд 22

Урок-КВН «Цилиндр - Конус», слайд 22
L=5,r=4 Найти h
Найти элементы конуса (цилиндра )по готовым чертежам.
АВ=20 <АВС=30 ̊ Найти r

Слайд 23

Урок-КВН «Цилиндр - Конус», слайд 23
Равнобедренный треугольник ABC вращается вокруг основания АС. АВ=m, <ВАО=φ. Найдите Sповерхности тела, полученного при вращении треугольника.
Цилиндр получен вращением квадрата со стороной а вокруг одной из его сторон. Найдите Sбок. цилиндра

Слайд 24

Урок-КВН «Цилиндр - Конус», слайд 24
Капитанов
Конкурс

Слайд 25

Урок-КВН «Цилиндр - Конус», слайд 25
Задача . Высота конуса равна 10 см. Найдите площадь сечения, проходящего через вершину конуса и хорду основания, стягивающую дугу в 60°, если плоскость сечения образует с плоскостью основания конуса угол 45°.

Слайд 26

Урок-КВН «Цилиндр - Конус», слайд 26
Задача . Плоскость параллельная оси цилиндра, отсекает от окружности основания дугу в 60° . Образующая цилиндра равна 10√3 см , расстояние от оси до секущей плоскости равно 2см. Найдите площадь сечения.

Слайд 27

Урок-КВН «Цилиндр - Конус», слайд 27
Подведение итогов
Название конкурса Количество баллов «Мерседес» Количество баллов «Каленвал»
Домашнее задание
Разминка
Решение задач
Конкурс капитанов
итого

Слайд 28

Урок-КВН «Цилиндр - Конус», слайд 28
Задача №555 (а) № 534 Вопрос 4 к главе 6. MATHEM_4_2_2_2_1_k_g_1.0.0.3.oms (сцены 1,2,3)
Домашнее задание:

Слайд 29

Урок-КВН «Цилиндр - Конус», слайд 29
http://krabov.net/11878-10-velikih-matematikov-10-foto.html https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcTspfNnc0ieOPzkSd26xf7vB3lJWaoyKVWDt4zX4_1iHoy9j7kLHA http://900igr.net/datai/algebra/Matematiki/0002-001-Arkhimed.jpg https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTqtFQFgJOTh5omDIP0GDUHTLQUUaWP-W7ZA_p0RZ_ueGbGSb5K http://img0.liveinternet.ru/images/foto/b/0/502/1415502/f_4819195.jpg
Интернет ресурсы
^ Наверх
X

Благодарим за оценку!

Мы будем признательны, если Вы так же поделитесь этой презентацией со своими друзьями и подписчиками.

Закрыть (X)