Слайды и текст этой онлайн презентации
Слайд 1
История открытия комплексных чисел
Слайд 2
Содержание
Натуральные числа
Дроби
Пифагор
Диагональ квадрата несоизмерима со стороной
Отрицательные числа
Руффини
Всякое уравнение n-й степени имеет n корней
Числа новой природы
Мнимые числа
Комплексные числа
Использование мнимых чисел
Выводы
Слайд 3
Натуральные числа
Древнегреческие математики считали “настоящими” только натуральные числа.
В III веке Архимед разработал систему обозначения вплоть до такого громадного как
Слайд 4
Дроби
Наряду с натуральными числами применяли дроби - числа, составленные из целого числа долей единицы.
В практических расчетах дроби применялись за две тысячи лет до н. э. в древнем Египте и древнем Вавилоне.
Долгое время полагали, что результат измерения всегда выражается или в виде натурального числа, или в виде отношения таких чисел, то есть дроби.
Слайд 5
Пифагор
учил, что «… элементы чисел являются элементами всех вещей и весь мир в челом является гармонией и числом».
Слайд 6
Сильнейший удар по этому взгляду был нанесен открытием, сделанным одним из пифагорейцев.
Он доказал, что диагональ квадрата несоизмерима со стороной.
Отсюда следует, что натуральных чисел и дробей недостаточно, для того чтобы выразить длину диагонали квадрата со стороной 1.
Диагональ квадрата несоизмерима со стороной
Слайд 7
Есть основание утверждать, что именно с этого открытия начинается эра теоретической математики: открыть существование несоизмеримых величин с помощью опыта, не прибегая к абстрактному рассуждению, было невозможно.
Диагональ квадрата несоизмерима со стороной
Слайд 8
Отрицательные числа
Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел - это было сделано китайскими математиками за два века до н. э. Отрицательные числа применяли в III веке древнегреческий математик Диофант, знавший уже правила действия над ними, а в VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом.
Слайд 9
С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII веке было установлено, что квадратный корень из положительного числа имеет два значения - положительное и отрицательное, а из отрицательных чисел квадратный корень извлекать нельзя: нет такого числа , чтобы .
Отрицательные числа
Слайд 10
В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений вида кубические и квадратные корни:
Отрицательные числа
Слайд 11
Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень ( ), а если оно имеет три действительных корня ( ), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим корням ведет через невозможную операцию извлечения квадратного корня из отрицательного числа.
Слайд 12
Вслед за тем, как были решены уравнения 4-й степени, математики усиленно искали формулу для решения уравнения 5-й степени.
Слайд 13
Руффини
Но Руффини (Италия) на рубеже XVIII и XIX веков доказал, что буквенное уравнение пятой степени нельзя решить алгебраически; точнее: нельзя выразить его корень через буквенные величины a, b, c, d, e с помощью шести алгебраических действий (сложение, вычитание, умножение, деление, возведение в степень, извлечение корня).
Слайд 14
Всякое уравнение n-й степени имеет n корней
В 1830 году Галуа (Франция) доказал, что никакое общее уравнение, степень которого больше чем 4, нельзя решить алгебраически. Тем не менее всякое уравнение n-й степени имеет (если рассматривать и комплексные числа) n корней (среди которых могут быть и равные).
Слайд 15
В этом математики были убеждены еще в XVII веке (основываясь на разборе многочисленных частных случаев), но лишь на рубеже XVIII и XIX веков упомянутая теорема была доказана Гауссом.
Всякое уравнение n-й степени имеет n корней
Слайд 16
Числа новой природы
Итальянский алгебраист Дж. Кардано в 1545 г. предложил ввести числа новой природы.
Он показал, что система уравнений не имеющая решений во множестве действительных чисел, имеет решения вида ________,________ , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать что __________.
Слайд 17
Кардано называл такие величины “чисто отрицательными” и даже “софистически отрицательными”, считал их бесполезными и старался их не употреблять. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины.
Числа новой природы
Слайд 18
В 1572 году вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней.
Числа новой природы
Слайд 19
Мнимые числа
Название “мнимые числа” ввел в 1637 году французский математик и философ Р. Декарт, а в 1777 году один из крупнейших математиков XVIII века - Л. Эйлер предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа (мнимой единицы).
Слайд 20
Комплексные числа
Этот символ вошел во всеобщее употребление благодаря К. Гауссу . Термин “комплексные числа” так же был введен Гауссом в 1831 году. Слово комплекс (от латинского complexus) означает связь, сочетание, совокупность понятий, предметов, явлений и т. д., образующих единое целое.
Слайд 21
В течение XVII века продолжалось обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование.
Постепенно развивалась техника операций над мнимыми числами.
Комплексные числа
Слайд 22
На рубеже XVII и XVIII веков была построена общая теория корней n-ых степеней сначала из отрицательных, а за тем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра (1707):
Комплексные числа
Слайд 23
С помощью этой формулы можно было так же вывести формулы для косинусов и синусов кратных дуг. Л. Эйлер вывел в 1748 году замечательную формулу :
, которая связывала воедино показательную функцию с тригонометрической.
Слайд 24
Формула Л.Эйлера
С помощью формулы Л. Эйлера можно было возводить число e в любую комплексную степень.
Можно находить sin и cos от комплексных чисел, вычислять логарифмы таких чисел, то есть строить теорию функций комплексного переменного.
Слайд 25
Использование мнимых чисел
В конце XVIII века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами.
Слайд 26
Хотя в течение XVIII века с помощью комплексных чисел были решены многие вопросы, в том числе и прикладные задачи, связанные с картографией, гидродинамикой и т. д., однако еще не было строго логического обоснования теории этих чисел.
Использование мнимых чисел
Слайд 27
По этому французский ученый П. Лаплас считал, что результаты, полученные с помощью мнимых чисел, - только наведение, приобретающее характер настоящих истин лишь после подтверждения прямыми доказательствами.
“Никто ведь не сомневается в точности результатов, получаемых при вычислениях с мнимыми количествами, хотя они представляют собой только алгебраические формы иероглифы нелепых количеств” Л. Карно.
Использование мнимых чисел
Слайд 28
Использование мнимых чисел
В конце XVIII века, в начале XIX века было получено геометрическое истолкование комплексных чисел. Датчанин К. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изобразить комплексное число __________точкой на координатной плоскости.
Слайд 29
Использование мнимых чисел
Позднее оказалось, что еще удобнее изображать число не самой точкой M, а вектором , идущим в эту точку из начала координат. При таком истолковании сложение и вычитание комплексных чисел соответствуют эти же операции над векторами.
Слайд 30
Вектор можно задавать не только его координатами a и b, но так же длиной r и углом φ, который он образует с положительным направлением оси абсцисс. При этом , ________ и число z принимает вид который называется тригонометрической формой комплексного числа.
Использование мнимых чисел
Слайд 31
Использование мнимых чисел
Число r называют модулем комплексного числа z и обозначают . Число φ называют аргументом z и обозначают ArgZ. Заметим, что если z =0, значение ArgZ не определено, а при z≠0 оно определено с точностью до кратного 2π. Упомянутая ранее формула Эйлера позволяет записать число z в виде (показательная форма комплексного числа).
Слайд 32
Выводы
Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения.
Слайд 33
Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости.
Выводы