Презентация - Кривые линии (лекция 6)


Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)Кривые линии (лекция 6)
На весь экран

Слайды и текст этой презентации

Слайд 1

Лекция 6 Кривые линии . Основные понятия и определения. Виды кривых линий (плоские и пространственные). Применение кривых линий в архитектуре и строительстве. Геометрическая модель поверхности . Способы образования поверхностей. Классификации поверхностей. Линейчатые поверхности. Нелинейчатые поверхности

Слайд 2

Кривые линии. Основные понятия и определения Кривые линии широко применяются в архитектуре и строительстве. По кривым линиям очерчиваются различные пространственные формы- арки, своды и т.п. Кривые линии применяют для образования поверхностей различных архитектурных объектов и конструкций зданий – покрытий в виде оболочек, сводов и куполов, пандусов и винтовых лестниц. Кривые линии могут быть результатом пересечения поверхностей, они могут быть краевыми контурами отсеков поверхностей- оболочек или видимыми и очерковыми контурами поверхностей

Слайд 3

Кривые линии в начертательной геометрии рассматриваются как непрерывная совокупность последовательных положений движущейся точки , а также как линия пересечения поверхностей Кривая может быть описана (задана) аналитически, т.е. уравнением , например эллипс, парабола и др. Если образование кривой не имеет строгой закономерности, то она задается графически, например горизонтали в плане местности.

Слайд 4

Кривые линии. Основные понятия и определения Если все точки кривой линии лежат в одной плоскости, такая кривая линия называется плоской (окружность, эллипс, парабола). Если все точки кривой линии нельзя совместить с плоскостью, то такая кривая линия называется пространственной (например, винтовые линии)

Слайд 5

Свойства проекций кривой В начертательной геометрии кривые линии изучаются по их проекциям. Свойства проекций кривой: проекции кривой линии являются также кривыми линиями Если точка принадлежит кривой линии, то ее проекции принадлежат одноименным проекциям этой кривой Касательная к кривой линии проецируется в касательную к проекции этой кривой, если направление проецирования не параллельно касательной

Слайд 6

Плоские кривые Для исследования локальных свойств плоской кривой строят в некоторой точке касательную и нормаль Касательной к плоской кривой в некоторой ее точке называется предельное положение секущей, когда две общие с кривой точки сечения, стремясь друг к другу, совпадут Касательная определяет направление движения точки по кривой Нормалью называется прямая, лежащая в плоскости кривой и перпендикулярная касательной в точке ее касания

Слайд 7

Свойства точек кривой Точка кривой, в которой можно провести единственную касательную, называется гладкой . Кривая, состоящая только из гладких точек, называется гладкой кривой. Точка кривой называется обыкновенной, если при движении точки по кривой направление ее движения и направление поворота касательной не изменяются Точки, не отвечающие этим условиям, называются особыми

Слайд 8

Особые точки кривой Точка перегиба А- касательная пересекает кривую Точка возврата первого рода В Точка возврата второго рода С Точка излома D - кривая в этой точке имеет две касательные

Слайд 9

Пространственные кривые Пространственные кривые линии могут иметь самую разнообразную форму. Они могут быть заданы аналитически. Кривые случайного вида задаются графически. Для анализа пространственной кривой необходимо установить самые общие ее свойства, которые изучаются по ее проекциям. Для задания на чертеже пространственной кривой линии и точек, принадлежащих ей, достаточно двух ее проекций – горизонтальной и фронтальной.

Слайд 10

Проекции пространственных кривых Наибольшее применение в практике архитектурного проектирования имеют закономерные пространственные кривые , в частности винтовые линии Винтовая линия образуется двойным движением точки – поступательным и вращательным.

Слайд 11

Цилиндрическая винтовая линия - гелиса Представляет собой траекторию точки, вращающейся вокруг некоторой прямой и совершающей одновременно равномерное движение вдоль прямой. Фронтальная проекция цилиндрической винтовой линии представляет собой синусоиду Смещение точки вдоль образующей за один оборот называется шагом h винтовой линии При развертывании цилиндрической поверхности в плоскость цилиндрическая винтовая линия изобразится прямой линией. Угол φ , составленный касательной к винтовой линии с плоскостью, перпендикулярной оси, называется углом подъема винтовой линии

Слайд 12

Цилиндрическая винтовая линия - гелиса h - шаг винтовой линии φ - угол подъема 0 1 2 3 4 5 6 7 8 5 6 7 8 Для построения одного витка надо горизонтальную и фронтальную проекции разделить на одинаковое количество частей.

Слайд 13

Арх. Ф. Шехтель. Интерьер особняка Дорожинской, 1901 г. В архитектурной практике цилиндрические винтовые линии применяются для образования контуров каркаса и поверхностей винтовых лестниц, винтовых пандусов для въезда автомашин в многоэтажных гаражах, для устройства развязок в двух уровнях на пересечении магистралей.

Слайд 14

Коническая винтовая линия Представляет собой траекторию точки, равномерно перемещающейся по образующей прямого кругового конуса и в то же время равномерно вращающейся вместе с образующей вокруг оси. Горизонтальная проекция конической винтовой линии представляет собой спираль Архимеда Проекции каждой точки определяются пересечением соответствующих образующих с проекциями параллелей конуса, плоскости которых смещены по вертикали (в данном примере h /8). Для построения одного витка надо горизонтальную и фронтальную проекции разделить на одинаковое количество частей

Слайд 15

Проект памятника III Интернационалу (художник В. Татлин, 1919 г.) Металлическая стержневая наклонная башня высотой 400 м сужается кверху. Динамику всей композиции придают элементы двух конических винтовых линий

Слайд 16

Образование и каркас поверхностей В начертательной геометрии поверхность рассматривается как непрерывное множество последовательных положений линии, перемещающейся в пространстве по определенному закону. Такой способ образования поверхностей называется кинематическим

Слайд 17

Кинематический способ образования поверхностей Направляющая Образующая При кинематическом способе образования поверхности образующая линия « n » движется по направляющей линии « m » по заданному направлению « S »

Слайд 18

Определитель и каркас поверхностей Определитель поверхности – совокупность геометрических элементов и условий, необходимых и достаточных для однозначного задания поверхности в пространстве и на чертеже Поверхность считается заданной, если относительно любой точки пространства однозначно решается вопрос о принадлежности ее к данной поверхности Все поверхности делятся на 2 группы: многогранные и кривые

Слайд 19

Многогранные поверхности Многогранной поверхностью называется поверхность, образованная частями (отсеками) пересекающихся плоскостей Отсеки плоскостей называются гранями , а линии их пересечения – ребрами . Совокупность ребер и вершин многогранной поверхности называют сеткой Наиболее распространенные многогранники – призмы и пирамиды Призму, ребра которой перпендикулярны основанию, называют прямой.

Слайд 20

Общие положения Направляющая и образующие создают линейчатый каркас поверхности Точка принадлежит поверхности, если она лежит на линии этой поверхности Направляющая « m » может быть: замкнутой или разомкнутой ; плоской или пространственной

Слайд 21

Пирамидальная поверхность Определитель – ломаная направляющая « m » и вершина « S » Закон образования : Поверхность образуется движением прямолинейной образующей « а », закрепленной в точке « S » по ломаной направляющей « m ». Направляющая - плоская незамкнутая ломаная линия Проекции ломаной пространственной незамкнутой направляющей

Слайд 22

Призматическая поверхность Определитель : ломаная направляющая « m » и заданное направление « S ». Закон образования : Призматическая поверхность образуется движением прямолинейной образующей « n » по ломаной направляющей « m » параллельно заданному направлению « S ». s s 2 s 1 Направляющая- ломаная плоская незамкнутая Проекции ломаной Плоской замкнутой направляющей

Слайд 23

Кривые поверхности Кривые поверхности отличаются большим разнообразием форм- от самых простых до сложнейших. Поверхности, полученные на основе геометрического способа образования, отличаются целостностью и структурной четкостью, а также возможностью математического описания и точного отображения на чертеже

Слайд 24

Геометрическая форма поверхности определяет не только эстетические качества поверхности. «Несущая способность конструкции – функция ее геометрической формы» (итальянский архитектор и инженер П. Л. Нерви) Современные оболочки способны перекрывать пролеты до 300 м.

Слайд 25

Систематизация (классификация) поверхностей По закону движения образующей – поверхности с поступательным движением образующей, с вращательным и винтовым. По виду образующей - поверхности с прямолинейной образующей (линейчатые) и с криволинейной образующей (не линейчатые) По закону изменения формы образующей – с образующей постоянного и переменного вида По признаку развертывания поверхности на плоскость - развертываемые и не развертываемые По способу задания поверхности - аналитическому или графическому (закономерные и незакономерные (графические))

Слайд 26

По признаку развертывания поверхности делятся на развертываемые и не развертываемые Развертка : Совмещение поверхности с плоскостью Развертки бывают: Точные – совмещение поверхности с плоскостью без деформаций (многогранные поверхности) Приближенные – имеют место небольшие деформации: растяжения, сжатие, складки (кривые поверхности -линейчатые) Условные – имеют место сильные деформации. Фактически поверхность разрывается на отдельные части (кривые поверхности не линейчатые)

Слайд 27

Очертание поверхности Чтобы придать чертежу поверхности наглядность, строят ее очертание – проекцию линии контура поверхности Контуром видимости называется линия, точки которой являются точками касания проецирующих прямых. Проекция контура на плоскости проекций называется очерком поверхности на данной плоскости При изображении поверхности на чертеже проекцию контурной линии называют линией видимости , которая является границей, отделяющей видимую часть поверхности от скрытой, невидимой части данной поверхности на данной плоскости проекций

Слайд 28

Очерк Очерк Контур Построение очерка геометрического тела на плоскостях проекций

Слайд 29

Линейчатые поверхности Линейчатые поверхности - поверхности, образованные движением прямой образующей в пространстве по определенному закону

Слайд 30

Коническая поверхность Определитель поверхности: вершина « S » и криволинейная направляющая « m ». Закон образования : Коническая поверхность образуется движением прямолинейной образующей « n », закрепленной в точке « S » по криволинейной направляющей « m ». Линия « а » - пересечение поверхности с плоскостью проекций- след поверхности. След поверхности направляющая вершина образующие

Слайд 31

Цилиндрическая поверхность Определитель: криволинейная направляющая « m » и заданное направление « s ». Закон образования : Цилиндрическая поверхность образуется движением прямолинейной образующей « n » по криволинейной направляющей « m » параллельно заданному направлению. Линия « а » - пересечение поверхности с плоскостью проекций. а направляющая s s 2 s 1

Слайд 32

Торсовая поверхность (Поверхность с ребром возврата) Торсовой поверхностью называется линейчатая поверхность, образованная множеством положений движущейся прямой образующей , касательной к пространственной кривой линии « n ». Определитель : кривая направляющая « n », называемая ребром возврата.

Слайд 33

Для архитектурно-строительной практики важен случай, когда ребром возврата служит цилиндрическая винтовая линия . Кривая сечения поверхности горизонтальной плоскостью, перпендикулярной оси цилиндра, или горизонтальный след поверхности представляют собой плоскую кривую – эвольвенту , поэтому данную поверхность называют эвольвентной поверхностью или развертываемым геликоидом. Горизонтальная проекция ребра возврата (окружность) является эволютой этой кривой. Эволюта – это множество центров кривизны эвольвенты (точки 1 .12 на окружности)

Слайд 34

Поверхность одинакового ската – углы наклона всех образующих к горизонтальной плоскости равны

Слайд 35

Винтовая поверхность Винтовая поверхность образуется винтовым движением образующей линии. Это совокупность двух движений образующей – поступательного перемещения вдоль оси поверхности и вращательного вокруг оси. Если образующая прямая линия , винтовую поверхность называют геликоидом . Геликоид называют прямым, если образующая составляет с осью поверхности прямой угол. В других случаях геликоид называют наклонным.

Слайд 36

а - прямой геликоид . Если образующая пересекается с осью поверхности, геликоид называют закрытым . Если не пересекается- открытым . б- закрытый наклонный геликоид.

Слайд 37

Поверхность пандусов многоэтажных гаражей и некоторых других зданий представляет собой открытый прямой геликоид

Слайд 38

Поверхности с плоскостью параллелизма (Поверхности Каталана) Определитель : две направляющих и плоскость параллелизма Закон образования : Прямая образующая движется по двум направляющим одновременно параллельно некоторой плоскости, называемой плоскостью параллелизма В зависимости от вида направляющих различают три вида поверхностей: Цилиндроид : обе направляющие- кривые линии Коноид : одна направляющая кривая, вторая прямая Косая плоскость – две скрещивающиеся прямые направляющие

Слайд 39

Цилиндроид Σ 1 Σ 1 Цилиндроид образуется движением прямолинейной образующей ( L ) по двум криволинейным направляющим ( m , n ) параллельно некоторой пло скости параллелизма Σ . Σ 1

Слайд 40

Цилиндроид. Моделирование поверхностей L1- образующая направляющая направляющая - образующая 1 направляющая направляющая 1 1 2 2 2 P 1 1 2

Слайд 41

Коноид Коноид образуется движением прямолинейной образующей ( L ) по двум направляющим ( m , n ) , одна из которых – прямая линия, а другая – кривая, параллельно некоторой плоскости параллелизма Σ . Σ 1 Σ 1 Σ 1

Слайд 42

Пример : схема покрытия промышленного здания составной поверхностью (шедовое покрытие). Обеспечивает естественное освещение и вентиляцию L 1 L2 1 1 Σ 1 2 2 2 1 L

Слайд 43

Гиперболический параболоид (Косая плоскость) Σ Σ 1 Гиперболический параболоид образуется движением прямолинейной образующей ( L ) по двум прямолинейным направляющим ( m , n ) – (скрещивающимся прямым) параллельно некоторой плоскости параллелизма Σ . m n n 1 m 1 m 2 n 2 m 1 n 1 Σ 1 1

Слайд 44

Гиперболический параболоид – поверхность дважды линейчатая. Она содержит два семейства прямолинейных образующих. Если принять за направляющие прямые АВ и С D , а плоскость параллелизма S П 1 , получим первое семейство образующих. Если принять за направляющие ВС и А D и другую плоскость параллелизма Т П 1 , то получим второе семейство образующих

Слайд 45

Образующие одного семейства- скрещивающиеся прямые Каждая образующая одного семейства пересекает все образующие другого семейства. Т.о. гиперболический параболоид имеет непрерывный сетчатый каркас из двух семейств пересекающихся образующих. Это свойство придает поверхности большую пространственную жесткость и хорошую технологичность возведения Криволинейные очерки поверхности на фронтальной и профильной проекциях являются параболами

Слайд 46

Поверхность вращения Параллель Горло Главный меридиан Меридиан Экватор Определитель поверхности: ось вращения и образующая Закон образования : Поверхность образуется вращением образующей (прямой или кривой) вокруг неподвижной прямой – оси вращения. (Расположен параллельно плоскости проекций)

Слайд 47

Сечение поверхности плоскостью, перпендикулярной оси вращения, называется параллелью . Максимальная параллель – экватор . Минимальная- горло поверхности. Сечение поверхности плоскостью вдоль оси – меридианы . Главный меридиан расположен параллельно плоскости проекций (проецируется в натуральную величину на данную плоскость проекций)

Слайд 48

Тор – образуется вращением окружности вокруг оси , не проходящей через ее центр, но расположенной в плоскости окружности. Если окружность не пересекает ось вращения- открытый тор или кольцо. Если ось касается окружности –закрытый тор. Если пересекает- самопересекающийся тор. Открытый тор (кольцо) Самопересекающийся тор

Слайд 49

Каркасные поверхности Поверхности, к которым нельзя применить математические или геометрические закономерности, задают сетью линий, заполняющих поверхность и являющихся линейчатым каркасом поверхности. Поверхности, заданные графически семейством линий, принадлежащих поверхности, называют каркасными Каркас поверхности в этом случае называют дискретным в отличие от непрерывного каркаса поверхностей, заданных кинематическим способом. Точки и линии, не лежащие на линиях дискретного каркаса, могут быть построены только приближенно.

Слайд 50

Пример : земная поверхность, заданная дискретным каркасом линий уровня- горизонталями и называемая топографической поверхностью. Поверхности такого вида называют графическими, т.к. их можно задать только чертежом.

Слайд 51

Построение кривой линии, лежащей на поверхности вращения Гл. меридиан Экватор Гл. меридиан Экватор С 1 α 2 Задача 8.2. стр.40 : Построить горизонтальную проекцию линии АСВ, лежащей на поверхности сферы. Решение: Точка « А » лежит на главном меридиане . А 2 А 1 Точка « С » лежит на экваторе . С 2 С 1 Для построения точки « В » рассекаем сферу плоскостью α , строим параллель радиуса « R » и указываем на ней точку « В » R В 2 В 1

Слайд 52

α 2 β 2 Для построения точки « D » рассекаем сферу плоскостью « α », строим парал-лель радиуса « R 1 » и указываем на ней точку « D ». R 1 D 2 D 1 Чтобы построить точку « Е » рассекаем сферу плоскостью « β ». Строим парал - лель радиуса « R 2 » и указываем на ней точку « Е ». R 2 E 2 E 1 На горизонтальной плоскости проекций соединяем проекции точек В 1 , D 1 , С 1 , Е 1 , А 1 . Часть проекции кривой линии В 1 D 1 С 1 - видима, так как лежит выше экватора. Точка « С » - граница видимости. Часть линии А 1 Е 1 С 1 – не видима, так как находится ниже экватора. C 1 С