Презентация - Вневписанная окружность

Оцени!

Слайды и текст этой онлайн презентации

Слайд 1

Вневписанная окружность, слайд 1
Доклад на тему: «Вневписанная окружность»
Номинация: математика Выполнили: Коляда Валентина Афонина Екатерина ученицы 9м класса гимназии № 22 научный руководитель учитель высшей категории Плеснявых Елена Аслановна

Слайд 2

Вневписанная окружность, слайд 2
Содержание
Введение. Основная часть Глава 1. Определение вневписанной окружности. Центр вневписанной окружности. Касательная к вневписанной окружности. Глава 2. Формулы для вычисления радиусов вневписанных окружностей. § 1. Соотношение между радиусом вневписанной окружности и периметром треугольника § 2. Соотношение между радиусом вневписанной окружности, площадью и периметром треугольника Глава 3. Некоторые соотношения с радиусами вневписанных окружностей. § 1. Выражение суммы радиусов вневписанных окружностей через радиус вписанной окружности и радиус описанной окружности § 2. Выражение суммы величин, обратных радиусам вневписанных окружностей, через величину обратную радиусу вписанных окружностей. § 3. Выражение суммы всех попарных произведений радиусов вневписанных окружностей через квадрат полупериметра треугольника. § 4. Выражение произведения радиусов вневписанных окружностей через произведение радиуса вписанной окружности и квадрат полупериметра треугольника. § 5. Выражение высоты треугольника через радиусы вневписанных окружностей. Заключение. Библиография.

Слайд 3

Вневписанная окружность, слайд 3
Глава 1. Окружность называется вневписанной в треугольник, если она касается одной из сторон треугольника и продолжений двух других сторон
N
М
H

Слайд 4

Вневписанная окружность, слайд 4
Центр вневписанной окружности в треугольник есть точка пересечения биссектрисы внутреннего угла треугольника, противолежащего той стороне треугольника, которой окружность касается, и биссектрис двух внешних углов треугольника (1)
Дано: АВС Окр. (О; r) М, N, К – точки касания Доказать (1) Решение: Т. к. окружность касается сторон угла САК, то центр окружности О равноудален от сторон этого угла, следовательно, он лежит на биссектрисе угла САК. Аналогично, точка О лежит на биссектрисе угла АСN. Т. к. окружность касается прямых ВА и ВС, то она вписана в угол АВС, а значит её центр лежит на биссектрисе угла АВС. Ч.т. д.

Слайд 5

Вневписанная окружность, слайд 5
Расстояние от вершины угла треугольника до точек касания вневписанной окружности со сторонами этого угла равны полупериметру данного треугольника АВ1 = АС1 = p
Дано: АВС Вневписанная окр. (Оа; ra ) Доказать, что АВ1 = АС1 = p Доказательство: Т.к. Оа - центр вневписанной окружности. Касательные, прове - денные к окружности из одной точки, равны между собой, поэтому ВВ1 = ВА1 , СА1 = СС1 , АВ1 = АС1. Значит, 2p = (AC + СА1) + (AB + ВА1) = (AC + CC1) + (AB + BB1) = AC1 + AB1 = 2AC1 = 2AB1 т.е. АВ1 = АС1 = p.
В1
ra
В
Оа
ra
А1
ra
α/2
α/2
А
С1
С

Слайд 6

Вневписанная окружность, слайд 6

Глава 2. § 1. Радиус вневписанной окружности. Касающейся сторон данного внутреннего угла треугольника, равен произведению полупериметра треугольника на тангенс половины этого угла, т. е. ra = ptg , rb = ptg , rc = ptg (2)
Дано: АВС Вневписанная окр. (Оа ; ra) Доказать (2) Решение: В прямоугольном треугольнике А Оа С1 ra и p – длины катетов, угол Оа А С1 равен , поэтому ra = ptg .
p
В1
В
ra
c
Оа
ra
А
ra
b
С
С1
p

Слайд 7

Вневписанная окружность, слайд 7

§ 2. Радиус вневписанной окружности, касающейся данной стороны треугольника, равен отношению площади треугольника к разности полупериметра и этой стороны. т.е. ra = , rb = , rc = (3)
Дано: АВС Вневписанная окр. (Оа ; ra) Доказать (3) Решение: Имеем S = SABC = SAOaC + SBOaC – SBOaC = × (b + c – a) = ra× (p – a), т.е. ra =
p
В1
В
ra
c
Оа
ra
А
ra
b
С
С1
p

Слайд 8

Вневписанная окружность, слайд 8

Глава 3. § 1 Сумма радиусов вневписанных окружностей равна сумме радиуса вписанной окружности и удвоенного диаметра описанной окружности, т. е. ra + rb + rc = r + 4R
Доказательство: Выразим все радиусы через стороны, площадь и полупериметр треугольника: r = , R = , ra = , rb = , rc = Значит, ra + rb + rc – r = + + - = = = = = = 4R

Слайд 9

Вневписанная окружность, слайд 9
§ 2. Сумма величин, обратных радиусам вневписанных окружностей, равна величине, обратной радиусу вписанной окружности, т. е.
Доказательство: Используем выражения радиусов через стороны и площадь треугольника: r = , R = , ra = , rb = , rc = Значит,

Слайд 10

Вневписанная окружность, слайд 10

§ 3. Сумма всех попарных произведений радиусов вневписанных окружностей равна квадрату полупериметра треугольника, т. е. rarb + rbrc + rcra = p2
Доказательство: Воспользуемся формулами ранее доказанных радиусов через стороны и площадь треугольника: r = , ra = , rb = , rc = Подставим Из формулы Герона следует (p – a)(p – b)(p – c) = , поэтому

Слайд 11

Вневписанная окружность, слайд 11
§ 4. Произведение всех трех радиусов вневписанных окружностей равно произведению радиуса вписанной окружности на квадрат полупериметра треугольника, т.е. rarbrc = rp2
Доказательство: Из ранее доказанных формул для радиусов и формулы Герона ra = , rb = , rc = , Тогда

Слайд 12

Вневписанная окружность, слайд 12

Следствие 1. Площадь треугольника равна отношению произведения всех трех радиусов вневписанных окружностей к полупериметру треугольника, т.е.
Доказательство: Из rarbrc = rp2 = rp × p = Sp. Следовательно

Слайд 13

Вневписанная окружность, слайд 13

Следствие 2. Площадь треугольника равна квадратному корню из произведения всех трех радиусов вневписанных окружностей и радиуса вписанной окружности, т.е.
Доказательство: Из следствия 1, что и равенства S = pr, получаем, перемножая их почленно, . Значит

Слайд 14

Вневписанная окружность, слайд 14

§ 5. Величина, обратная высоте треугольника, опущенной на его данную сторону, равна полусумме величин, обратных радиусам вневписанных окружностей, касающихся двух других сторон треугольника, т.е. , ,
Доказательство: Воспользуемся формулами , Значит, ,

Слайд 15

Вневписанная окружность, слайд 15
3. Заключение.
Рассмотренные свойства позволили установить связь между радиусами вписанной и вневписанной окружностями, между радиусами вневписанной окружностью и площадью треугольника, между радиусами вневписанных окружностей и периметром треугольника. Данный материал выходит за рамки школьной программы и будет полезен учащимся увлеченным математикой.
^ Наверх
X

Благодарим за оценку!

Мы будем признательны, если Вы так же поделитесь этой презентацией со своими друзьями и подписчиками.