Слайды и текст этой онлайн презентации
Слайд 1
Взаимное расположение прямой и окружности
Слайд 2
Взаимное расположение прямой и окружности
.
О
А
В
С
D
R
ОR – радиус
СD – диаметр
AB - хорда
Слайд 3
Дано:
Окружность с центром в точке О радиуса r
Прямая, которая не проходит через центр О
Расстояние от центра окружности до прямой обозначим буквой s
O
r
s
Слайд 4
Возможны три случая:
1) sO
sА
В
Прямая АВ называется секущей по отношению к окружности.
Слайд 5
Возможны три случая:
2) s=r
Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку.
O
s=r
M
Слайд 6
Возможны три случая:
3) s>r
Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек.
O
s>r
r
Слайд 7
Касательная к окружности
Определение: Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
O
s=r
M
m
Слайд 8
Выясните взаимное расположение прямой и окружности, если:
r = 15 см, s = 11см
r = 6 см, s = 5,2 см
r = 3,2 м, s = 4,7 м
r = 7 см, s = 0,5 дм
r = 4 см, s = 40 мм
прямая – секущая
прямая – секущая
общих точек нет
прямая – секущая
прямая - касательная
Слайд 9
Решите № 633.
Дано:
OABC-квадрат
AB = 6 см
Окружность с центром O радиуса 5 см
Найти:
секущие из прямых OA, AB, BC, АС
О
А
В
С
О
Слайд 10
Свойство касательной: Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
m – касательная к окружности с центром О
М – точка касания
OM - радиус
O
M
m
Слайд 11
Признак касательной: Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна радиусу, то она является касательной.
окружность с центром О
радиуса OM
m – прямая, которая проходит через точку М
и
m – касательная
O
M
m
Слайд 12
Свойство касательных, проходящих через одну точку:
▼ По свойству касательной
∆АВО, ∆АСО–прямоугольные
∆АВО=∆АСО–по гипотенузе и катету:
ОА – общая,
ОВ=ОС – радиусы
АВ=АС и
▲
О
В
С
А
1
2
3
4
Отрезки касательных к
окружности, проведенные
из одной точки, равны и
составляют равные углы
с прямой, проходящей через
эту точку и центр окружности.