Презентация - Задания типа 18


Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18Задания типа 18
На весь экран

Слайды и текст этой презентации

Слайд 1

Задания типа 18

Слайд 2


18.1 Найти все значения а, при каждом из которых уравнение 1=|x – 3| - |2x + a| имеет единственное решение.
Решение: Перепишем уравнение: |2x + a| = |x – 3| - 1. Построим графики функций: у = |x – 3| - 1 и у = |2x + a|.

Слайд 3


Очевидно, что данное уравнение будет иметь единственное решение, если вершина движущегося «уголка» попадет в точку с координатами (2; 0) или (4; 0). Следовательно, координаты этих точек удовлетворяют уравнению у = |2x + a|. Значит, 0 = |4 + a| или 0 = |8 + a| а = - 4 а = - 8. Ответ: - 8 или – 4.

Слайд 4


ПАМЯТКА
x, если х ≥ 0
|x| =
Пользоваться определением модуля
– x, если х ˂ 0
|x|< а →
-а < x < а
|x|> а →
x < -а и х > а
А так же
Знать и строить: уравнение, линию, алгоритм построения:
y = kx + b – линейная,
прямая
надо иметь, хотя бы, 2 точки
y = аx² + bх + с – квадратная,
парабола
*направление ветвей
*пересечение с ОХ
*х₀ = -b/2a – абсцисса вершины – ось симметрии
*выделять полный квадрат
x² + y² = R² – окружность,
Центр (0;0), R - радиус
(x-а)² + (y-b)² = R² – окружность,
Центр (a; b), R - радиус
k > 0
y = - гипербола
линии выше ОХ
оставляем
y = |f(x)|
точки оси ОХ
y = f(x)
линии ниже ОХ
симметрично
график
график
в верхнюю полуплоскость

Слайд 5


y = Ikf(mx + c) + bI
Преобразования
графика
y = Ikf(m (x + a)) + bI
Контрольный вопрос
Как построить график …
исходная по точкам
1. y = f(х)
m = ¹∕₃
а, если m = -2 ?
-
растянуть в 3 раза вдоль оси ОХ
2. y = f(mх)
-

а, если a = 2 ?
-
-

a = -2
сдвинуть на 2 вправо
3. y = f(m(х + a)
-
-
-
-

-
-
-
-
-
-
-
-
-

-
k = 2
4. y = kf(m(х + a))
-
а, если k = -¹∕₂ ?
-
растянуть в 2 раза вдоль оси ОY
-
сжать и (-)
b = -2
5. y = kf(m(х + a)) + b
влево
а, если b = ¹∕₂ ?
сдвинуть на 2 вниз
сжать и (-)
?
вверх
Линия при Х ≥ 0 и
6. y = kf(m( IхI + a)) + b
симметричная ей при Х ≤ 0
относительно оси ОУ

Слайд 6

18.2 Найдите все значения параметра а, при которых уравнение имеет единственное решение.
А
В
РЕШЕНИЕ.
Правая часть этого уравнения задает неподвижный «уголок», левая – «уголок», вершина которого двигается по оси абсцисс.

Слайд 7


у
х
- 4
- 2

Слайд 8

Задача 18.3 Найдите все значения a, при каждом из которых функция имеет более двух точек экстремума.
Решение. 1. Функция f имеет вид:
а) при
, поэтому ее график есть часть параболы
с ветвями, направленными вверх, и осью симметрии x=5;
б) при
, поэтому ее график есть часть параболы с
ветвями, направленными вверх, и осью симметрии x=3.
Все возможные виды графика функции f(x) показаны на рисунках:

Слайд 9

Задача 18.3 Найдите все значения a, при каждом из которых функция
имеет более двух точек экстремума.
2) График обеих квадратичных функций проходят через точку (a2;f(a2)) . 3) Функция y=f(x)имеет более двух точек экстремума, а именно – три, в единственном случае (рис. 1): Ответ:

Слайд 10


18.4 Найдите все положительные значения a, при каждом из которых система уравнений имеет единственное решение.
x – 9, если х ≥ 0 ,
По определению модуля:
|x| – 9 =
– x – 9, если х ˂ 0 ,
( –1)²
х²
х² =
( – х)²
∙ х² =
= ( –1∙ х)² =
Заметим:
=( –1)²
(-(х+9))²
∙(х+9)²
= (х+9)²
(– x – 9)²=
(- х – 9)² + (у – 5)² = 9
(х – 9)² + (у – 5)² = 9
(х + 9)² + (у – 5)² = 9
х ≥ 0
х < 0
График уравнения - совокупность двух окружностей.
R = 3
центры
(9; 5)
(-9; 5)

Слайд 11

8
Первые уравнения
Второе уравнение
График 1-го уравнения системы:
у
у
(х + 9)² + (у – 5)² = 9
(х – 9)² + (у – 5)² = 9
Центр (9; 5)
Центр (-9; 5)
BC²
= 61
АС =
первый ответ:
окружность
Центр (-3;0)
Радиус
МЕНЯЕТСЯ
В
B
А
А
R=3
R=3


С

-9
-9
О
О
х
х
-6
-3
Второй случай
R=а
единственная

Слайд 12

10
18.5 Найти значения а, при которых уравнение
Корни
имеет более двух корней.
= a|x-5|
на [0; + ∞)
- абсциссы точек
g(x)
f(x)
пересечения
величина «УГОЛКА» модуля
g(x) =a|x-5|
f(x)=
зависит от а
y = x-5
гипербола
y = |x-5|
на [0; + ∞]
а
= ²⁄5
3 корня
при х = 0

a(5-x)
a(x-5)

левый луч «УГОЛКА» касается гиперболы
2 корня






1 корень
2 корня
0,5

Определим точку касания
g(x)
= a(5-x) – левый луч
Должны выполняться условия:
f(x) =
g ′(x)
f ′(x) =
= - a
-5
=
|∙
1=
а
= ²⁄9 (2 корня)
х = 2 в точке касания
а Є
(²⁄5; ²⁄9]
Ответ:
лучи «УГОЛКА»
ЕГЭ. 07.06.12.

Слайд 13


Решение.
Исходное уравнение равносильно совокупности уравнений:
График этой совокупности — объединение «уголка» и параболы.
а3 = ?
Подвижная прямая а=а0 пересекает график совокупности в трёх точках, если а=а1,
а=а2,
а=а3.
а2= ?
а2=5
а1= 3
Ответ: 8.

Слайд 14


18.7 Найдите все значения р, при каждом из которых найдётся q такое, что система имеет единственное решение:
Решение: Графиком функции х2 + у2 = 0 является окружность с центром (0; 0) и R = 1. q = 0, у = р; р = 1 или р = -1. q > 0, y = q | x | + p; p = 1. q < 0, y = q | x | + p; p = -1. Ответ: р = 1 или р = -1.

Слайд 15

18.8
Найдите все значения параметра а, при каждом из которых система уравнений имеет ровно 4 решения.
Решение. Преобразуем данную систему:
Пусть t = y – 3, тогда система примет вид:
Заметим, что количество решений полученной системы совпадает с количеством решений исходной системы. Построим графики уравнений (1) и (2) в системе координат Oxt.

Слайд 16

18.8
График первого уравнения – ромб, диагонали которого, равные 8 и 6, лежат на осях Ох и Оt, а графиком второго уравнения является окружность с центром в начале координат и радиусом r = a. Графики уравнений системы имеют ровно четыре общих точки, и, следовательно, система имеет ровно 4 решения, тогда и только тогда, когда окружность либо вписана в ромб, либо ее радиус удовлетворяет условию 3 < r < 4.
В первом случае радиус окружности является высотой прямоугольного треугольника с катетами 3 и 4, откуда
В втором случае получаем 3 <a < 4, откуда −4 < a < −3; 3 < a < 4.
Ответ: а =  2,4; −4 < a < −3; 3 < a < 4.