Слайды и текст этой онлайн презентации
Слайд 1
Решение логарифмических уравнений и неравенств. Учитель математики МБОУ СОШ с. Березовка 1-я Портнова С.Ю.
Слайд 2
Логарифмические уравнения
Уравнения, содержащие неизвестное под знаком логарифма или в основании логарифма называются логарифмическими.
Слайд 3
Решение уравнений, содержащих неизвестное под знаком логарифма, основано на следующих теоремах:
Слайд 4
Методы решения ЛУ: Вид уравнения
1.Применение определения логарифма
2.Введение
новой переменной
3. Приведение к одному и тому же основанию
4. Метод потенцирования
5 Метод логарифмирования обеих частей уравнения
6. Функционально-графический метод
Слайд 5
Выбери метод решения уравнения
Слайд 6
Решите уравнения
;.
Слайд 7
Найти корни уравнения
;.
Слайд 8
Для решения ЛУ графическим методом надо построить в одной и той же системе координат графики функций, стоящих в левой и правой частях уравнения и найти абсциссу их точки пересечения
Найти корни уравнения
Так как функция у= log3 х возрастающая, а функция у =4-х убывающая на (0; + ∞ ),то заданное уравнение на этом интервале имеет один корень.
Слайд 10
Логарифмические неравенства
Решение неравенств, содержащих неизвестное под знаком логарифма, основано на следующих теоремах:
Слайд 11
Решите неравенства
1
.
Слайд 13
Логарифмическая «комедия 2>3»
Комедия начинается с неравенства,
бесспорно правильного.
Затем следует преобразование
тоже не внушающее сомнения
Большему числу соответствует больший логарифм, если функция возрастает, значит,
После сокращения на
Имеем 2>3.
В чем ошибка этого доказательства?