Слайды и текст этой онлайн презентации
Слайд 1
Соосные поверхности - поверхности вращения, имеющие общую ось вращения Все линии пересечения - окружности На плоскость проекций, параллельную осям вращения, они проецируются в виде отрезка прямой линии, соединяющего точки пересечения очерковых образующих
Слайд 3
ВОПРОС 1 Соосные поверхности при их пересечении дают (в пространстве) Отрезки прямой Квадрат Окружность Треугольник
Слайд 4
Теорема Монжа: две поверхности вращения, описанные вокруг третьей, пересекаются между собой по двум кривым второго порядка, которые проецируются на плоскость, параллельную осям вращения в виде прямолинейных отрезков, соединяющих точки пересечения очерковых образующих
Слайд 6
Теорема Монжа используется для Гранных поверхностей Поверхностей вращения Проецирующих поверхностей
Слайд 7
Преимущество : возможность построения линии пересечения двух поверхностей в одной проекции Недостаток : ограничение области применения следующими условиями: Обе пересекающиеся поверхности -поверхности вращения Их оси вращения пересекаются Оси вращения параллельны плоскости проекций
Слайд 8
Порядок построения: Определить центр вспомогательных концентрических сфер - это точка пересечения осей вращения Определить радиус минимальной вписанной сферы - это максимальный из радиусов сфер, вписанных в обе заданные поверхности вращения
Слайд 9
Построить линии пересечения вспомогательной сферы с обеими заданными поверхностями. Линии пересечения - окружности, которые проецируются в отрезки прямой линии Определить точки пересечения построенных линий Определить видимость линий выполненного изображения
Слайд 12
Метод вспомогательных концентрических сфер определяет общие точки Двух пересекающихся поверхностей Двух пересекающихся поверхностей и вспомогательной сферы Двух пересекающихся поверхностей и вспомогательной окружности
Слайд 13
Метод концентрических сфер позволяет в одной проекции построить линию пересечения двух поверхностей Область использования этого метода ограничена следующими требованиями: - обе поверхности должны быть поверхностями вращения - их оси должны пересекаться - их оси должны лежать в плоскости параллельной плоскости проекций
Слайд 14
Какие Вы знаете частные случаи пересечения поверхностей вращения? Как строится линия пересечения в этих случаях? Для чего служит метод концентрических сфер?
Слайд 15
Достоинства метода концентрических сфер Область использования метода Какой радиус сферы называется минимальным? Какие точки линии пересечения являются характерными?