Презентация - Свойства функции "Алгебра 10 класс"


Нажмите для просмотра
Свойства функции "Алгебра 10 класс"
На весь экран

Слайды и текст этой презентации

Слайд 1

Свойства функции Алгебра 10 класс Урок – лекция 10/2/19 Харитоненко Н. В. МОУ СОШ №3 с. Александров Гай

Слайд 2

План Возрастание и убывание функции Ограниченность функции Наибольшее и наименьшее значение функции Максимум и минимум функции Четность и нечетность

Слайд 3

Определение № 1 Функцию у f(x) называют возрастающей на множестве Х , если для любых точек x 1 и x 2 из множества Х, таких, что x 1 x 2 , выполняется неравенство f (x 1 ) f (x 2 ).

Слайд 4

Возрастающая функция Функция возрастает, если большему значению аргумента соответствует большее значение функции.

Слайд 5

Определение № 2 Функцию у f(x) называют убывающей на множестве Х , если для любых точек x 1 и x 2 из множества Х, таких , что x 1 x 2 , выполняется неравенство f ( x 1 ) f( x 2 ).

Слайд 6

Убывающая функция Функция убывает, если большему значению аргумента соответствует меньшее значение функции .

Слайд 7

Обычно термины «возрастающая функция», «убывающая функция» объединяют общим названием монотонная функция , а исследование функции на возрастание или убывание называют исследованием функции на монотонность.

Слайд 8

Определение № 3 Функцию у f(x) называют ограниченной снизу на множестве Х , если все значения этой функции на множестве Х больше некоторого числа, т.е., если существует такое число m , что для любого значения х выполняется неравенство f(x) m

Слайд 9

Определение № 4 Функцию у f(x) называют ограниченной сверху на множестве Х , если все значения этой функции на множестве Х меньше некоторого числа , т.е. , если существует такое число М , что для любого значения х выполняется неравенство f(x) М

Слайд 10

Слайд 11

Если функция ограничена и снизу и сверху на всей области определения, то ее называют ограниченной

Слайд 12

Определение № 5 Число m называют наименьшим значением функции у f(x) на множестве Х , если: 1)во множестве Х существует такая точка x 0 , что f(x 0 ) m 2) для любого значения х из множества Х выполняется неравенство

Слайд 13

Определение № 6 Число т называют набольшим значением функции у f(x) на множестве Х , если: 1)во множестве Х существует такая точка, что f(x 0 ) т 2) для любого значения х из множества Х выполняется неравенство

Слайд 14

Слайд 15

Если у функции существует y наиб, то она ограничена сверху Если у функции существует y наим, то она ограничена снизу.

Слайд 16

Определение № 7 Точку x 0 называют точкой максимума функции у f(x), если у этой точки существует окрестность, для всех точек которой (кроме самой точки x 0 ) выполняется неравенство

Слайд 17

Точку x 0 называют точкой минимума функции у f(x) , если у этой точки существует окрестность, для всех точек которой ( кроме самой точки x 0 ) выполняется неравенство Точки максимума и минимума объединяют общим названием – точки экстремума

Слайд 18

Слайд 19

Выпуклость функции Функция выпукла вниз на промежутке Х, если, соединив любые две точки ее графика (с абсциссами из Х) отрезком, мы обнаружим, что соответствующая часть графика лежит ниже проведенного отрезка. Функция выпукла вверх на промежутке Х, если, соединив любые две точки ее графика (с абсциссами из Х) отрезком, мы обнаружим, что соответствующая часть графика лежит выше проведенного отрезка .

Слайд 20

Слайд 21

Непрерывность функции Непрерывность функции на отрезке Х – означает, что график функции на данном промежутке не имеет точек разрыва

Слайд 22

Слайд 23

Определение 8 Функцию у f(x) называют четной, если для любого значения х из множества Х выполняется равенство

Слайд 24

Определение 9 Функцию у f(x) называют нечетной, если для любого значения х из множества Х выполняется равенство

Слайд 25

Слайд 26

Если график функции симметричен относительно оси ординат, то функция четная Если график функции симметричен относительно начала координат, то функция нечетная

Слайд 27

Алгоритм исследования функции 1. Область определения функции 2. Четность , нечетность 3. Непрерывность 4. Выпуклость 5. Промежутки возрастания и убывания 6. Точки экстремума 7. Ограниченность функции 8. Наибольшее и наименьшее значение функции 9. Множество значений функции

Слайд 28

Слайд 29